

This article was downloaded by:

On: 30 January 2011

Access details: Access Details: Free Access

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

¹³C NMR Assignments of Artemisinin, Desoxyartemisinin and Artemether

Farouk S. El-feraly^a; Moshera M. El-sherei^a; Charles D. Hufford^a; Edward M. Croom Jr.^b; Thomas J. Mahier^a

^a Department of Pharmacognosy School of Pharmacy, University of Mississippi, University, MS, U.S.A.

^b Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, MS, U.S.A.

To cite this Article El-feraly, Farouk S. , El-sherei, Moshera M. , Hufford, Charles D. , Croom Jr., Edward M. and Mahier, Thomas J.(1985) ¹³C NMR Assignments of Artemisinin, Desoxyartemisinin and Artemether', Spectroscopy Letters, 18: 10, 843 — 849

To link to this Article: DOI: 10.1080/00387018508062315

URL: <http://dx.doi.org/10.1080/00387018508062315>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

**¹³C NMR ASSIGNMENTS OF ARTEMISININ, DESOXYARTEMISININ
AND ARTEMETHER**

Key Words: Artémisinin (Qinghasu); desoxyartemisinin; arte-mether; dihydroartemisinin; antimalarial activity, ¹³C nmr assignments; selective decoupling.

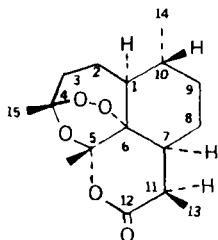
Farouk S. El-Feraly, Moshera M. El-Sherei, Charles D. Hufford,
Edward M. Croom, Jr.* and Thomas J. Mahier
Department of Pharmacognosy and *Research Institute of
Pharmaceutical Sciences, School of Pharmacy,
University of Mississippi,
University, MS 38677, U.S.A.

Abstract

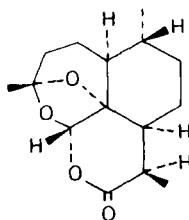
The ¹³C nmr assignments for all carbons except the methyl-ene groups were made for artemisinin (1), artemether (2) and desoxyartemisinin (3). The assignments were based on chemical shift theory and confirmed by selective band decoupling experiments.

INTRODUCTION

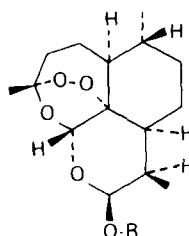
Artemisinin (Qinghasu) (1), extracted¹ from the traditional Chinese herb Artemisia annua L., is a novel type of an anti-malarial with rapid action and low toxicity. It is particularly useful against the chloroquine-resistant parasite and in cerebral malaria¹. The structure and absolute configuration of artemi-


sinin (1), a sesquiterpene lactone with a peroxide bridge was firmly established by X-ray diffraction studies, and later confirmed by total synthesis².

Sodium borohydride reduction¹ of artemisinin (1) provides its dihydro derivative 4 which serves as the starting material for the preparation artesunate (the sodium salt of its hemisuccinate ester) and artemether^{1,3} (2). Both forms are claimed to be more potent than artemisinin (1) itself¹.


As a part of our ongoing study of the biosynthetic routes to artemisinin (1), and the structure elucidation of its metabolites along with those of artemether (2), it was deemed important to assign the carbon signals in their ¹³C nmr spectra. This study, it was thought, should not only identify unambiguously possible biosynthetic precursors for artemisinin (1) but also help identify its metabolites and those of artemether (2).

RESULTS AND DISCUSSION


Examination of the proton-noise and off-resonance decoupled ¹³C nmr spectra of artemisinin (1) revealed the presence of three methyl signals at δ 12.5, 19.8 and 25.2, three methylene signals at δ 33.7, 24.9, 23.4 and 35.9, five methine signals at δ 32.9, 45.0, 37.5, 50.1 and 93.8, two quaternary signals at δ 79.5 and 105.3, and a carbonyl signal at δ 171.9. This information agreed well with what was briefly reported⁴ by

Artemisinin (1)

Desoxyartemisinin (3)

Artemether (2, R = CH₃)

Dihydroartemisinin (4, R = H)

the Chinese except for the signal at δ 23.4 which was inaccurately assigned to a methyl group while the signal at 24.9 was ascribed to a methylene carbon⁵.

Differentiation between the methyl signals was readily accomplished by selective band decoupling at the respective

¹H nmr positions. Assignment of the C-5 and C-11 methines was similarly determined. The two quaternary oxygenated carbons at C-4 and C-6 were distinguished based on chemical shift theory.

Assignment of the remaining methine carbons at C-1, C-7 and C-10 necessitated the study of the ¹³C nmr spectra of artemether⁴ (2) and desoxyartemisinin¹ (3). The spectra for 2 retained the methine signal at δ 37.5 while that at δ 45.0 was insignificantly shifted to δ 44.6 and that at δ 50.1 now appeared at δ 52.8. This pattern permitted the assignments of C-1, C-7 and C-10 as shown in Table 1. Distinction between C-1 and C-10 was based on the difference between their chemical shift values. As expected, in the desoxy-derivative 3, C-1, C-7 and C-10 all shifted (Table 1) since both C-1 and C-7 are alfa to the oxide bridge while C-10 is in a beta position.

While all the above carbons have now been unambiguously assigned, those of the methylene groups remained to be distinguished. However, based on chemical shift theory alone C-3 and C-9 should be the most deshielded of all methylene carbons.

Also, it should be noted that dihydroartemisinin (4) which is reported³ to exist in the solid form as an epimeric mixture of 4 and its C-11 epimer was found to exhibit complex concentration-dependent ¹³C and ¹H nmr spectra. In concentrated solutions containing 100 mg per 0.40 ml of CDCl₃ at least two alde-

TABLE 1

¹³C nmr^a Assignments of Artemisinin (1),
Artemether (2) and Desoxyartemisinin (3)

Carbon Number	Artemisinin (1)	Artemether (2)	Desoxyartemisinin (3)
1	44.9 (d)	44.6 (d)	44.7 (d)
2	23.4 ^b (t)	24.6 ^b (t)	22.1 ^b (t)
3	35.9 ^b (t)	36.6 ^b (t)	35.5 ^b (t)
4	105.3 (s)	104.1 (s)	109.2 (s)
5	93.8 (d)	87.8 ^c (d)	99.7 (d)
6	79.5 (s)	81.2 (s)	82.5 (s)
7	50.1 (d)	52.8 (d)	44.7 (d)
8	24.9 ^b (t)	24.8 ^b (t)	34.0 ^b (t)
9	33.7 ^b (t)	34.8 ^b (t)	23.6 ^b (t)
10	37.5 (d)	37.5 (d)	35.4 (d)
11	32.9 (d)	30.9 (d)	32.8 (d)
12	171.9 (s)	103.4 ^c (d)	171.8 (s)
13	12.5 (q)	13.0 (q)	12.6 (q)
14	19.8 (q)	20.4 (q)	18.6 (q)
15	25.2 (q)	26.2 (q)	24.0 (q)
<u>OCH₃</u>	-----	55.9 (q)	-----

^aAll spectra were taken in CDCl₃.

^bAssignments interchangeable within the same column.

^cDistinction between these two signals was accomplished by irradiation at δ 5.40 (C₅-H, s) which collapsed the doublet at δ 87.8 into a singlet.

hyde signals can be observed in the ^1H nmr spectrum at δ 10.20 and 10.30 with a singlet at δ 2.20 suggesting a methyl ketone. This is associated with the appearance of two aldehyde carbonyls in the ^{13}C nmr spectrum at δ 207.6 and δ 206.5 and a ketone carbonyl at δ 208.8. Dilution of the sample reduces the intensity of the signals due to the aldehyde groups in the ^1H nmr spectrum. It appears that **4** exists in solution as a mixture of numerous equilibrium components whose identification is now in progress.

EXPERIMENTAL

Artemisinin (**1**) was isolated from locally grown Artemisia annua L. and its identity was established by direct comparison with an authentic sample supplied by Dr. A. Brossi of the NIH, Bethesda, Maryland. Artemether³, desoxyartemisinin¹ and dihydroartemisinin³ were prepared by literature methods. The ^{13}C nmr spectra were obtained at 15.03 MHz on a JeolFX60 FT NMR Spectrometer, using TMS as internal standard and CDCl_3 as solvent. The proton-noise decoupled spectra were obtained using a 45° pulse, 5-s repetition and 8,192 datum points. Single frequency off-resonance spectra were conducted by centering the decoupling frequency 1100 Hz downfield from the signal for TMS. The abbreviations *s*, *d*, *t*, and *q* denote singlet, doublet, triplet and quartet, respectively.

ACKNOWLEDGEMENT

This investigation received the financial support of the UNDP/World Bank/WHO Special Program for Research and Training in Tropical Diseases.

REFERENCES

1. For a comprehensive review on artemisinin see Klayman D.L. Qinghaosu (Artemisinin): An Antimalarial Drug from China. *Science* 1985; 228:1049.
2. Schmid G. and Hofheinz W. Total Synthesis of Qinghaosu. *J. Am. Chem. Soc.* 1983; 105:624.
3. Luo X., Yeh H.J.C., Brossi A., Flippin-Anderson J.L. and Gilardi R. Configuration of Antimalarials Derived from Qinghaosu: Dihydroqinghaosu, Artemether, and Artesunic Acid. *Helv. Chim. Acta* 1984; 67:1515.
4. China Cooperative Research Group on Qinghaosu and Its Derivatives as Antimalarials. Chemical Studies on Qinghaosu (Artemisinin). *J. Trad. Chin. Med.* 1982; 2:3.
5. These assignments were independently confirmed by Brossi et al. in their study of the thermal decomposition products of artemisinin. See Luo X., Yeh H.J.C., Brossi A., Flippin-Anderson J.L. and Gilardi R. Thermal Decomposition of Qinghaosu. *Heterocycles*, in press.

Received: 06/14/85

Accepted: 07/31/85